鋼結構抗震概念設計(鋼結構的抗震)
溫馨提示:這篇文章已超過620天沒有更新,請注意相關的內容是否還可用!
今天給各位分享鋼結構抗震概念設計的知識,其中也會對鋼結構的抗震進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!因此,結構的整體性是保證結構各個部分在地震作用下協調工作的重要條件,確保結構的整體性是抗震概念設計的重要內容。鋼結構房屋的抗震性能的優劣取決于結構的選型鋼結構抗震概念設計,進行實際工程設計時鋼結構抗震概念設計,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。
今天給各位分享鋼結構抗震概念設計的知識,其中也會對鋼結構的抗震進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
本文目錄一覽:
建筑結構抗震的概念設計?
建筑結構抗震的概念設計具體內容是什么,下面中達咨詢為大家解答。
一、關于建筑結構抗震概念設計的概述 我國結構計算理論經歷了經驗估算、容許應力法、破損階段計算、極限狀態計算,到目前普遍采用的概率極限狀態理論等階段。現行的《建筑結構可靠度設計統一標準》(GB50068-2001)則采用以概率理論為基礎的結構極限狀態設計準則,以使建筑結構的設計得以符合技術先進、經濟合理、安全適用的原則。概率極限狀態設計法更科學、更合理,但該法在運算過程中還帶有一定程度近似,只能視作近似概率法,并且僅憑極限狀態設計也很難估算建筑物的真正承載力。事實上,建筑物是一個空間結構,各種構件以相當復雜的方式共同工作,并非是脫離結構體系的單獨構件。 地震具有隨機性、不確定性和復雜性,要準確預測建筑物所遭遇地震的特性和參數,目前是很難做到的。而建筑物本身又是一個龐大復雜的系統,在遭受地震作用后其破壞機理和破壞過程十分復雜。且在結構分析方面,由于未能充分考慮結構的空間作用、非彈性性質、材料時效、阻尼變化等多種因素,也存在著不確定性。因此,結構工程抗震問題不能完全依賴“計算設計”解決。應立足于工程抗震基本理論及長期工程抗震經驗總結的工程抗震基本概念,從“概念設計”的角度著眼于結構的總體地震反應,按照結構的破壞過程,靈活運用抗震設計準則,全面合理地解決結構設計中的基本問題,既注意總體布置上的大原則,又顧及到關鍵部位的細節構造,從根本上提高結構的抗震能力。 二、抗震概念設計的基本原則與要求 1.選擇有利場地。造成建筑物震害的原因是多方面的,場地條件是其中之一。由于場地因素引起的震害往往特別嚴重,而且有些情況僅僅依靠工程措施來彌補是很困難的。因此,選擇工程場址時,應進行詳細勘察,搞清地形、地質情況,挑選對建筑抗震有利的地段,盡可能避開對建筑抗震不利的地段,任何情況下均不得在抗震危險地段上建造可能引起人員傷亡或較大經濟損失的建筑物。 對建筑抗震有利的地段,一般是指位于開闊平坦地帶的堅硬場地土或密實均勻中硬場地土。建造于這類場地上的建筑一般不會發生由于地基失效導致的震害,從而可從根本上減輕地震對建筑物的影響。對建筑抗震不利的地段,就地形而言,一般是指條狀突出的山嘴、孤立的山包和山梁的頂部、高差較大的臺地邊緣、非巖質的陡坡、河岸和邊坡的邊緣;就場地土質而言,一般是指軟弱土、易液化土、故河道、斷層破碎帶、暗埋塘浜溝谷或半挖半填地基等,以及在平面分布上成因、巖性、狀態明顯不均勻的地段。 2.采用合理的建筑平立面。建筑物的動力性能基本上取決于其建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,就能從根本上保證房屋具有良好的抗震性能。 經驗表明,簡單、規則、對稱的建筑抗震能力強,在地震時不易破壞;反之,如果房屋體形不規則,平面上凸出凹進,立面上高低錯落,在地震時容易產生震害。而且,簡單、規則、對稱結構容易準確計算其地震反應,可以保證地震作用具有明確直接的傳遞途徑,容易采取抗震構造措施和進行細部處理。 3.選擇合理的結構形式??拐鸾Y構體系是抗震設計應考慮的關鍵問題。按結構材料分類,目前主要應用的結構體系有砌體結構、鋼結構、鋼筋混凝土結構、鋼-混凝土結構等;按結構形式分類,目前常見的有框架結構、剪力墻結構、框架剪力墻結構、簡體結構等。結構體系的確定受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等諸多因素影響,是一個綜合的技術經濟問題,需進行周密考慮確定。 抗震規范對建筑結構體系主要有以下規定:①結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;②結構體系宜具有多道抗震防線,應避免因部分結構或構件破壞而導致整個體系喪失抗震能力或對重力荷載的承載能力;③結構體系應具有必要的抗震承載力,良好的變形能力和耗能能力;④結構體系宜具有合理的剛度和承載力分布,避免因局部削弱或突變形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高抗震能力;⑤結構在兩個主軸方向的動力特性宜相近,在結構布置時,應遵循平面布置對稱、立面布置均勻的原則,以避免質心和剛心不重合而造成扭轉振動和產生薄弱層。 4.提高結構的延性。結構的延性可定義為結構在承載力無明顯降低的前提下發生非彈性變形的能力。結構的延性反映了結構的變形能力,是防止在地震作用下倒塌的關鍵因素之一。 結構良好的延性有助于減小地震作用,吸收與耗散地震能量,避免結構倒塌。而結構延性和耗能的大小,取決于構件的破壞形態及其塑化過程,彎曲構件的延性遠遠大于剪切構件,構件彎曲屈服直至破壞所消耗的地震輸入能量,也遠遠高于構件剪切破壞所消耗的能量。因此,結構設計應力求避免構件的剪切破壞,爭取更多的構件實現彎曲破壞。始終遵循“強柱弱梁,強煎弱彎、強節點、弱錨固”原則。構件的破壞和退出工作,使整個結構從一種穩定體系過渡到另外一種穩定體系,致使結構的周期發生變化,以避免地震卓越周期長時間持續作用引起的共振效應。 5.確保結構的整體性。結構是由許多構件連接組合而成的一個整體,并通過各個構件的協調工作來有效地抵抗地震作用。若結構在地震作用下喪失了整體性,則結構各構件的抗震能力不能充分發揮,這樣容易使結構成為機動體而倒塌。因此,結構的整體性是保證結構各個部分在地震作用下協調工作的重要條件,確保結構的整體性是抗震概念設計的重要內容。 為了充分發揮各構件的抗震能力,確保結構的整體性,在設計的過程中應遵循以下原則:①結構應具有連續性。結構的連續性是使結構在地震作用時能夠保持整體的重要手段之一。②保證構件間的可靠連接。提高建筑物的抗震性能,保證各個構件充分發揮承載力,關鍵的是加強構件間的連接,使之能滿足傳遞地震力時的強度要求和適應地震時大變形的延性要求。③增強房屋的豎向剛度。在設計時,應使結構沿縱、橫2個方向具有足夠的整體豎向剛度,并使房屋基礎具有較強的整體性,以抵抗地震時可能發生的地基不均勻沉降及地面裂隙穿過房屋時所造成的危害。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
鋼結構抗震設計分析?
抗震設計基本要求
1、鋼結構房屋結構類型
常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型鋼結構抗震概念設計,進行實際工程設計時鋼結構抗震概念設計,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。
2、鋼結構房屋結構布置原則
鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其鋼結構抗震概念設計他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。
3、 鋼結構房屋適用的最大高度和高寬比
根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。
抗震設計的一般方法
鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。
1、建筑場地
在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。
2、地基和基礎
為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。
3、平面和立面布置
為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。鋼結構抗震概念設計我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:
(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。
(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。
(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。
(4)、建筑物在強震作用下的表現,既是對抗震設計的檢驗,也是對施工質量的檢驗。施工質量的好壞,直接影響鋼結構房屋的抗震能力。因此,抗震結構對材料和施工質量的特別要求,應在設計文件上注明。建筑物的施工要特別注意符合圖紙上合理的抗震要求,注意材料選擇,確保施工質量。
隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
高層鋼結構抗震設計分析?
目前,鋼結構普遍應用于各種類型的民用建筑中,在高層及超高層建筑中的應用則更為廣泛。同混凝土結構相比,鋼結構具有韌性好、強度與重量比高的優點,具有優越的抗震性能;但是,如果鋼結構房屋在結構設計、材料選用、施工制作和維護上出現問題。則其優良的鋼材特性將得不到充分的發揮,在地震作用下同樣會造成結構的局面破壞或整體倒塌。
一、高層建筑發展概括
80年代,是我國高層建筑在設計計算及施工技術各方面迅速發展的階段。各大中城市普遍興建高度在100m左右或100m以上的以鋼筋為主的建筑,建筑層數和高度不斷增加,功能和類型越來越復雜,結構體系日趨多樣化。比較有代表性的高層建筑有上海錦江飯店,它是一座現代化的高級賓館,總高153.52m,全部采用框架一芯墻全鋼結構體系,深圳發展中心大廈43層高165.3m,加上天線的高度共185.3m,這是我國第一幢大型高層鋼結構建筑。進入90年代我國高層建筑的設計與施工技術進入了新的階段。不僅結構體系及建筑材料出現多樣化而且在高度上長幅很大有一個飛躍。深圳于1995年6月封頂的地王大廈,81層高,385.95m為鋼結構,它居目前世界建筑的第四位。
二、高層鋼結構震害現象及其原因分析
鋼結構被認為具有卓越的抗震性能,在歷次的地震中,鋼結構房屋的震害要小于鋼筋混凝土結構房屋。很少發生整體破壞或倒塌現象。盡管如此,由于焊接、連接、冷加工等工藝技術以及外部環境的影響,鋼材材料的優點將受到影響。特別是因設計、施工以及維護不當,就很可能造成結構的破壞。根據鋼結構在歷次地震中的破壞形態,可能破壞形式分為以下幾類:
1、 結構倒塌
結構倒塌是地震中結構破壞最嚴重的形式。造成結構倒塌的主要原因是結構薄弱層的形成,而薄弱層的形成是由于結構樓層屈服強度系數和抗變4剛度沿高度分布不均勻造成的。這就要求在設計過程中應盡量避免上述不利因素的出現。
2、 節點破壞
節點破壞是地震中發生最多的一種破壞形式。剮性連接的結構構件一般采用鉚接或焊接形式連接。如果在節點的設計和施工中,構造及焊縫存在缺陷,節點區就可能出現應力集中、受力小均的現象,在地震中很容易出現連接破壞。梁柱節點可能出現的破壞現象主要表現為:鉚接斷裂,焊接部位位脫,加勁板斷型、屈曲,腹板斷裂、屈曲等。
3、 構件破壞
在以往所有地震中,多高層建筑鋼結構構件破壞的主要形式有支撐的破壞與失穩以及梁柱局部破壞兩種。(1)支撐的破壞與失穩。當地震強度較大時,支撐承受反復拉壓的軸向力作用,一旦壓力超出支撐的屈曲臨界力時,就會出現破壞或失穩。(2)梁柱局部破壞。對于框架柱,主要有翼緣屈曲、翼縫撕裂,甚至框架柱會出現水平裂縫或斷裂破壞。對于框架梁,主要有翼緣屈曲、腹板屈曲和開裂、扭轉屈曲等破壞形態。
4、基礎錨固破壞
鋼構件與基礎的錨固破壞主要表現為柱腳處的地腳螺栓脫開、混凝土破碎導致錨固失效、連接板斷裂等,這種破壞形式曾發生多起,根據對上述鋼結構房屋震害特征的分析可知,盡管鋼結構抗震性能較好,但在歷次的地震中,也會出現不同程度的震害。究其原因,元素是和結構設計、結構構造、施工質量、材料質量、日常維護等有關,為了預防以上震害的出現,減輕震害帶來的損失,多高層鋼結構房屋抗震設計必須嚴格遵循有關規程進行。
三、抗震設計基本要求
1、鋼結構房屋結構類型
常見的鋼結構房屋的結構體系有框架結構、框架一支援結構、框架一抗震墻板結構、簡體結構以及巨型框架結構等。鋼結構房屋的抗震性能的優劣取決于結構的選型,進行實際工程設計時,需要綜合考慮多種因素進行方案的優化,在優化過程中確定其適宜的結構體系。
2、鋼結構房屋結構布置原則
鋼結構房屋的結構體系和結構布置的選擇關系到結構的安全性、適用性和經濟性。和其他類型的建筑結構一樣,多高層鋼結構房屋應盡量采用規則的建筑方案。當結構體型復雜、平立面特別不規則時,可按實際需要在適當部位設置防震續,從而形成多個較規則的抗側力結構單元。由于鋼結構可耐受的結構變形大于混凝土結構,一般來說,不宜設抗震縫,必須設置時,抗震縫寬應不小于相應鋼筋混凝土結構房屋的1.5倍。
3、 鋼結構房屋適用的最大高度和高寬比
根據結構總體高度和抗震設防烈度確定結構類型和最大適用高度。結構的高寬比是影響結構整體穩定性和抗震性能的重要參數,它對結構剛度、側移和振動形式有直接影響。高度比指房屋總高度與平面較小寬度之比。高寬比值較大時,一方面使結構產生較大的水平位移及P—A效應,還由于傾覆力矩使柱產生很大的軸向力。因此,需要對鋼結構房屋的最大高寬比制定限值,不宜大于合理的限值,超過時應進行專門研究,采取必要的抗震措施。
抗震設計的一般方法
鋼材基本屬于各向同性的均質材料,且質輕高強、延性好,是一種很適合于建筑抗震結構的材料,在地震作用下,高層鋼結構房屋由于鋼材材質均勻,強度易于保證,所以結構的可靠性大;輕質高強的特點使得鋼結構房屋的自重輕,從而所受地震作用減??;良好的延性使結構在很大的變形下仍不致倒塌,從而保證結構在地震作用下的安全性。但是,鋼結構房屋如果設計和制造不當,在地震作用下,可能發生構件的失穩和材料的脆性破壞或連接破壞,使鋼材的性能得不到充分發揮,造成災難性后果。因此高層鋼結構房屋的抗震設計就顯得非常重要和必要。
1、建筑場地
在選擇建筑場地時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,對建筑場地做出綜合評價。宜選擇對建筑抗震有利的地段,如開闊平坦的堅硬場地土或密實均勻的干硬場地土等地段,避開對建筑抗震不利的地段,如軟弱場地土、易液化土、條狀突出的山嘴、高聳孤立的山丘,非巖質的陡坡、采空區、河岸和邊坡邊緣等地段。
2、地基和基礎
為了避免建筑物不均勻沉降而導致結構產生裂隙、甚至傾斜,使結構構件過早進入塑性區,同一結構單元不應設置在性質截然不同的地基土上,不宜部分采用天然地基,部分采用樁基;地基有軟弱粘性土、可液化土或嚴重不均勻土層時,應加強基礎的整體性和剛性。
3、平面和立面布置
為了避免地震時建筑發生扭轉和應力集中或塑性變形集中而形成薄弱環節,建筑平面、立面布置宜規則、對稱,質量分布和剛度變化宜均勻。但不設置抗震縫時,應采用與實際情況相符合的計算模型,設置抗震縫時,應將建筑物分割成規則的結構單元。我國《抗震規范》對高層鋼結構房屋的最大適用高度和鋼結構房屋的最大高寬比都有規定:
(1)、結構體系應具有明確的計算簡圖和合理的地震作用傳遞途徑;應有多道抗震設防防線,避免因部分結構或構件失效而導致整個體系喪失抗震能力或喪失對重力的承載能力;應具備必要的承載能力,良好的變形能力和耗能能力;應具有合理的剛度分布和承載力分布,避免因局部削弱或突變而形成薄弱部位,產生過大的應力集中或塑性變形集中,對可能出現的薄弱部位,應采取措施提高其承載能力。
(2)、在抗震結構體系中,應使結構構件和連接部位具有良好的延性,避免脆性破壞,提高抗震結構的整體變形能力。因此,鋼結構構件應合理控制尺寸,防止局部失穩或整體失穩,如對梁翼緣和腹板的寬厚比和高厚比都作了明確規定。此外,還應加強各構件之間的連接,以保證結構的整體性,抗震支承系統應保證地震作用時結構的穩定。
(3)、對于女兒墻、圍護墻、雨篷、封墻等非結構構件,應使其與主體結構有可靠地連接和錨固,避免地震時倒塌傷人,產生附加震害;圍護墻、隔墻等與主體結構的連接,應避免設置不當而導致主體結構破壞;應避免吊頂塌落及懸吊較重的裝飾物墜落,不可避免時應采取可靠措施。
(4)、建筑物在強震作用下的表現,既是對抗震設計的檢驗,也是對施工質量的檢驗。施工質量的好壞,直接影響鋼結構房屋的抗震能力。因此,抗震結構對材料和施工質量的特別要求,應在設計文件上注明。建筑物的施工要特別注意符合圖紙上合理的抗震要求,注意材料選擇,確保施工質量。
隨著人們對地震的不斷認識,為防止出現嚴重的地震的嚴重災害,造成財產損失和生命傷亡。人們對高層鋼結構房屋的抗震要求不斷提高。本文闡明了設計人員進行高層鋼結構房屋抗震設計時,應首先從概念設計著手,制定比較合理的設計方案等,確保房屋抗震設防目標的實現。
鋼結構各種流程
應注意的事項
(1)制作:鋼結構制作包括放樣、號料、切割、校正等諸多環節。高強度螺栓處理后的摩擦面,抗滑移系數應符合設計要求。
制作質量檢驗合格后進行除銹和涂裝。一般安裝焊縫處留出30~50mm暫不涂裝。
(2)焊接:焊工必須經考試合格并取得合格證書,且必須在其考試合格項目及其認可范圍內施焊。焊縫施焊后須在工藝規定的焊縫及部位打上焊工鋼印。
焊接材料與母材應匹配,全焊透的一、二級焊縫應采用超聲波探傷進行內部缺陷檢驗,超聲波探傷不能對缺陷作出判斷時,采用射線探傷。
施工單位首次采用的鋼材、焊接材料、焊接方法等,進行焊接工藝評定。
(3)運輸:運輸鋼構件時,要根據鋼構件的長度和重量選用車輛。鋼構件在車輛上的支點、兩端伸出的長度及綁扎方法均應保證構件不產生變形、不損傷涂層。
(4)安裝:鋼結構安裝要按施工組織設計進行,安裝程序須保證結構的穩定性和不導致永久性變形。安裝柱時,每節柱的定位軸線須從地面控制軸線直接引上。鋼結構的柱、梁、屋架等主要構件安裝就位后,須立即進行校正、固定。
由工廠處理的構件摩擦面,安裝前須復驗抗滑移系數,合格后方可安裝。
(5)防火與防銹:
1)鋼結構防火性能較差。當溫度達到550℃時,鋼材的屈服強度大約降至正常溫度時屈服強度的0.7,結構即達到它的強度設計值而可能發生破壞。
設計時應根據有關防火規范的規定,使建筑結構能滿足相應防火標準的要求。在防火標準要求的時間內,應使鋼結構的溫度不超過臨界溫度,以保證結構正常承載能力。
2)外露的鋼結構可能會受到大氣,特別是被污染的大氣的嚴重腐蝕,最普通的是生銹。這就必須對構件的表面進行防腐蝕處理,以保證鋼結構的正常使用。防腐處理的方法根據構件表面條件及使用壽命的要求決定。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
鋼結構房屋抗震設計怎么計算?
鋼結構房屋抗震設計怎么計算,完整的建筑結構抗震設計包括三個方面的內容與要求:
1.概念設計 在總體上把握抗震設計的主要原則,彌補由于地震作用及結構地震反應的復雜性而造成抗震計算不準確的不足
2.抗震計算 為建筑抗震設計提供定量保證
3.構造措施 為保證抗震概念與抗震計算的有效提供保障
上述三個方面的內容是一個不可割裂的整體,忽略任何一部分,都可能使抗震設計失效
一、計算模型
確定多高層鋼結構抗震計算模型時,應注意: 1. 進行多高層鋼結構地震作用下的內力與位移分析時,一般可假定樓板在自身平面內為絕對剛性。對整體性較差、開孔面積大、有較長的外伸段的樓板,宜采用樓板平面內的實際剛度進行計算 2. 進行多高層鋼結構多遇地震作用下的反應分析時,可考慮現澆混凝土樓板與鋼梁的共同作用。在設計中應保證樓板與鋼梁間有可靠的連接措施,此時樓板可作為梁翼緣的一部分計算梁的彈性截面特性。進行多高層鋼結構罕遇地震反應分析時,考慮到此時樓板與梁的連接可能遭到破壞,則不應考慮樓板與梁的共同工作 3. 多高層鋼結構的抗震計算可采用:平面抗側力結構的空間協同計算模型 結構布置規則、質量及剛度沿高度分布均勻、不計扭轉效應可采用平面結構計算模型 結構平面或立面不規則、體型復雜,無法劃分平面抗側力單元的結構以及筒體結構應采用空間結構計算模型 4. 多高層鋼結構在地震作用下的內力與位移計算,應考慮梁柱的彎曲變形和剪切變形,尚應考慮柱的軸向變形 一般可不考慮梁的軸向變形,但當梁同時作為腰桁架或桁架的弦桿時,則應考慮軸力的影響5. 柱間支撐兩端應為剛性連接,但可按兩端鉸接計算。偏心支撐中的耗能梁段應取為單獨單元 6. 應計入梁柱節點域剪切變形(如圖)對多高層建筑鋼結構位移的影響。
可將梁柱節點域當作一個單獨的單元進行結構分析,也可按下列規定作近似計算: 1)箱形截面柱框架 可將節點域當作剛域,剛域的尺寸取節點域尺寸的一半 2)工字形截面柱框架 可不考慮節點域,梁柱長度按軸線間距離確定
二、阻尼比取值
多高層鋼結構的阻尼比較小,按反應譜法計算時的取值: 1.多遇地震下的地震作用 高層鋼結構的阻尼比可取為0.02;多層(不超過12層)鋼結構的阻尼比可取為0.035 2.罕遇地震下的地震作用 考慮結構進入彈塑性,多高層鋼結構的阻尼比均可取為0.05
三、計算有關要求
進行多高層鋼結構抗震計算時,應注意滿足下列設計要求: 1、進行多遇地震下抗震設計時,框架-支撐(剪力墻板)結構體系中總框架任意樓層所承擔的地震剪力,不得小于結構底部總剪力的25% 2、在水平地震作用下,如果樓層側移滿足下式,則應考慮P–△效應
此時該樓層的位移和所有構件的內力均應乘以下式放大系數α
3. 驗算在多遇地震作用下整體基礎(筏形基礎或箱形基礎)對地基的作用時,可采用底部剪力法計算作用于地基的傾覆力矩,但宜取0.8的折減系數 4. 當在多遇地震作用下進行構件承載力驗算時,托柱梁及承托鋼筋混凝土抗震墻的鋼框架柱的內力應乘以不小于1.5的增大系數。
更多關于工程/服務/采購類的標書代寫制作,提升中標率,您可以點擊底部官網客服免費咨詢:
鋼結構建筑抗震設計基本要求
鋼材的延性好,質輕高,且各向同性,所以鋼結構建筑強度高,結構穩固,具有優越的抗震性,在地震中受到的損害遠低于鋼筋混凝土結構建筑。但是如果鋼結構建筑設計不當,就無法充分發揮鋼材的抗震性。
本文主要探討鋼結構建筑抗震設計的基本要求。
①建筑場地的選擇
場地選擇是第一步。應選擇堅硬、密實、均勻的場地土或是干硬、開闊、平坦的場地土之類的對建筑抗震有利地段,避開易液化土、軟弱場地土、邊坡邊緣或河岸等對建筑抗震不利的地段。同時在選擇建筑場地時要多考察,掌握當地的地震活動情況。
②關于地基
地基是支撐建筑的基礎,應具有整體性和剛性。天然地基若不滿足要求,則可以采用樁基。如果基地建設不當,很容易出現建筑物不均勻沉降的問題,這將導致結構產生裂隙,嚴重的會發生傾斜。
③鋼結構布置
建筑方案盡量要規則。鋼結構和其他結構一樣,如果結構的布置不合理,將會大大影響建筑的安全性。因為鋼結構可耐形變大于混凝土結構,所以一般不適合設置抗震縫,如果結構設計得比較復雜,可以在適當的部位設置防震續。
④日常維護
日常維護應嚴格遵循相關章程,防止基礎錨固破壞。盡管鋼結構建筑的抗震性比較好,但基礎錨固破壞仍然是地震中常見的破壞形態。根據歷次地震中鋼結構建筑被破壞的情形分析,除了鋼材的選擇、鋼結構的設計,日常維護也是重中之重。
關于鋼結構抗震概念設計和鋼結構的抗震的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。
發表評論
還沒有評論,來說兩句吧...